下面是小编为大家整理的2023数学教案:正比例意义,供大家参考。
1。正比例的意义教学反思小编为您带来了5篇《数学教案:正比例的意义》,我们不妨阅读一下,看看是否能有一点抛砖引玉的作用。
学生在上学期已经学过比的意义、比的化简与比的应用。在上一节课也体会了生活中存在的变量之间的关系,这些都为学生学习正比例奠定了基础。学生理解正比例的意义时比较困难,为此,我密切联系学生已有的生活经验和学习经验,设计了一系列情境,让学生体会生活中存在大量相关联的。量,它们之间的关系有着共同之处,从而引导学生认识成正比例的量以及明确正比例在实际生活中的广泛应用。
课堂上我设计了正方形的周长与边长、面积与边长的变化关系。通过表格、图像、表达式的比较,使学生体会到虽然正方形的周长和面积都随边长的增加而增加,但正方形的周长与边长、面积与边长的变化规律并不相同。同时,也让学生初步感知“在变化过程中,正方形的周长与边长的比值一定”,为认识正比例奠定基础。接着,我给学生提供第二个情境:当速度一定时,汽车行驶的路程与时间的变化关系。教学时,我先让学生把汽车行驶的时间和路程表填完整,引导学生观察并思考:当时间发生变化时,路程怎样变化;第三个情境则是,购买同一种苹果(也就是当单价一定时),应付的钱数与购买的苹果质量之间的关系。
通过以上实例,引导学生认识到:当速度一定时,路程随时间的变化而变化,在变化的过程中路程与时间的比值相同;当单价一定时,应付的钱数随购买苹果的质量的变化而变化,在变化过程中应付的钱数与质量的比值相同。在此基础上,让学生通过比较,概括出以上实例的共同点,引出“正比例”的意义。最后,通过小结、练习让学生总结出判断两种量是否成正比例的依据:
1、两种变量是不是相关联的量;
2、在变化的过程中,这两种量比值是否一定。
在巩固练习题中我让学生大量的复习了常见的数量关系。对于一些学生较容易出现错误的题目进行重点的讲解。例:圆柱的底面积一定,体积与高成什么比例;圆的周长与半径成正比例;圆的面积与半径是否成比例;人的身高与年龄是否成比例;一瓶矿泉水,喝掉的和瓶里剩下的水是否成比例……等等。
但是在教学中同样也感觉到,由于这个概念比较长,所以对于学生来说这个意义记忆下来是比较困难的,特别是对一些学习困难的学生。所以我也教给学生一定的方法,抓住句中的重点,通过理解来记忆。让学生通过相互之间说,前后同桌检查,达到对该概念的熟练叙述。
正比例的知识,是六年级的教学内容,是在学生已经学习了比和学会了分析基本数量关系的基础上进行学习的,是学生学习反比例知识以及进一步研究数量关系的基础,内容抽象,学生难以接受。因此,使学生正确的理解正比例的意义是本节课的重点和难点。我在实际教学中,总体来说是比较成功的。主要体现在以下几点:
1、从生活中引入
数学来源于生活,又运用于生活。所以我从学生所熟悉的生活中的例子入手,引导学生发现我们的身边处处都有相互关联的两种量。如:一个人的“体重”与“年龄”;从家到学校“已经走过的路程”和“剩余的路程”……等等。然后出示一组具有正比例特点的例子,再组织学生进行探究活动。
2、在探究中发现
探究学习是我们学习数学的基本方法之一,也是我们研究解决问题的重要方法。本课教学中,我通过表格列举出两种变化的数量在一定的情况下变化的数据,引导学生进行探究,从而自己发现两种相关联的量,一种扩大(或缩小)若干倍时,另一种也扩大(或缩小)相同的倍数,而且这两种数量对应的数的比值始终不变。从而理解正比例概念的本质特征。在教学中,使学生在观察、思考、探究中获得新知,充分发挥了学生的主体作用,大大地提高了学习的效率和学习兴趣。
3、在交流中升华
在本课的设计中,我本着“以学生为主体”的理念,运用启发式的教学原则,给学生以充分交流的时间、空间,组织学生以小组的形式,进行合作交流,使学生把探究中的发现,通过相互交流的形式进行展示,使每个学生不但展示了自己成功,也分享了别人的成果。学生不仅学到了新知,在其他方面也得到了全面提升。
4、在生活中应用
学习数学目的是运用数学,也就是为了解决身边的数学问题。为此,在归纳总结出了正比例的意义后,我安排了让学生说说生活中的一些正比例关系的例子,培养学生综合运用知识的能力,从而体会到数学离不开生活,生活也离不开数学。
5、在练习中发展
为了及时巩固新知识,练习是必不可少的。在练习的设计上,我除了设计理解正比例意义题型之外,重点设计了对学生运用正比例意义去判断生活中两种相关联的量是否成正比例的题型。在练习设计上做到由浅入深,循序渐进,使不同的学生都有一定的发展。
6、在反思中进步。
反思整节课教学,基本体现了“以学生自主探究为主”的教学方式,既关注了学生的学习过程,又使学生在交流评价过程中情感、态度、价值观等方面获得丰富的体验,较好的实现了事先的教学设想。
不足之处:由于部分学生在以前分析数量关系这个内容的学习上没有完全过关,我也没有及时扫清学生学习上的这个障碍,所以他们虽然掌握了正比例的特征,但实际运用中,由于不能够正确分析数量关系,所以就不能够准确的判断成正比例的量。以后的教学中要先查漏补缺,以得到更好的教学效果。
教后记
1.重组课堂流程,延展探究空间。
第一次教学,我按照“复习铺垫—教学例1例2—总结概念—尝试练习”的直线型流程展开。整节课下来,讲解清晰而简练,学生的听讲认真而专注。在课堂练习中,大部分学生能做出正确判断,但总觉得这样的教学过于顺畅了,学生少了些深刻的思考和体验。带着这些疑惑,我又进行了第二次教学。第二次教学,我为学生设计了两大板块,第一板块是选择材料、主体解读的“初步体验”板块。在这一板块中,借助三则具体材料,让学生经历自主选择、独立思考、小组交流和评价等数学活动,使学生充分积累了与正比例知识密切相关的原始信息和感性认识。第二板块是交流思维,形成认识的“概念生成”板块。在这一板块中,学生立足小组间的观点交流和思维共享,借助教师适时适度的点拨,自然生成了正比例的概念,并通过回馈具体材料的概念解释促进了理解的深入。这样的设计,流程板块少了,但探究空间却更为宽广了。
2. 呈现数学材料,丰富体验途径。
第一次教学,以时间与路程为变量的例1和以数量与总价为变量的例2,是支撑学生感悟正比例意义的两则数学材料。这两则材料从数量上分析偏少,呈现形式都是一模一样的静态出现,材料的使用方式也是雷同的,无法激发学生的参与热情。为了给学生的数学学习提供更为充足的材料,我改变了例1、例2和尝试练习的原有功能,把它们作为可供学生自主选择的三则数学材料进行整体呈现。这样教学的结果是:对于自己选定的数学材料,学生可以凭借个体独立解读、小组交流互评的渐进过程,充 分深入地自主探究,在亲历和体验中达成学习目标。而对于其他两则未选的数学材料,学生则可以借助全班交流这一互动环节分享其他小组的学习成果,在倾听和欣赏中达成学习目标。
3. 选择学习方式,促进深度感悟。
“引导发现”的启发式教学是第一次教学的主要方式,“教师问、学生答”是课堂行为的显性表现。在这样的数学学习中,学生的全部信息来自教师的讲解,很少有机会去体会教师给予的信息,很少有机会去交流现场生成的想法,也很少有机会呈现真实的学习状态。第二次教学,教师让学生采取选择材料、自主探究、合作共享的学习方式,并注意对学生的学习进行适度的点拨,有利于促进学生的深度感悟。由于学习材料是自己选择的,因而学习过程便更多地体现自觉、自主、自我的主体意味。在自主探究的过程中,学生初步积累了丰富真切的原始体验。在与同伴交流时,学生在表达中巩固了自己的探究成果,同时又在倾听中分享了别人的学习收获、体会。可以说,虽然每个学生只重点研究了一则材料蕴含的规律,但却全面收获了三则材料所彰显的数学事实,这正是数学交流的魅力所在。在此基础上,借助教师恰当及时的教学点拨,自然实现了“数学事实”向“数学概念”的提升。
教学目标
1、使学生理解正比例的意义、
2、能根据正比例的意义判断两种量是不是成正比例、
3、培养学生的抽象概括能力和分析判断能力、
4、使学生理解正比例的意义、
教学难点
引导学生通过观察、思考发现两种相关联的量的变化规律,即它们相对应的数的比值一定,从而概括出正比例关系的概念、
教学过程
一、复习
出示下面的题目,让学生回答、、已知路程和时间,怎样求速度?板书: =速度
2、已知总价和数量,怎样求单价?板书:=单价
3、已知工作总量和工作时间,怎样求工作效率?板书:=工作效率
4、已知总产量和公顷数,怎样求公顷产量?板书:=公顷产量
二、导入新课
教师:这是我们过去学过的一些常见的数量关系、这节课我们进一步来研究这些数量关系中的一些特征,首先来研究这些数量之间的正比例关系、(板书课题:正比例的意义、)
三、新课
1、教学例1、
用小黑板出示例1:一列火车行驶的时间和所行的路程如下表;
时间(时) 1 2 3 4 5 6 7 8
路程(千米) 90 180 270 360 450 540 630 720
提问:
表中有哪几种量?
当时间是1小时时,路程是多少?当时间是2小时时,路程又是多少?
这说明时间这种量变化了,路程这种量怎么样了?(也变化了、)
教师说明:像这样,一种量变化,另一种量也随着变化,我们就说这两种量是两种相关联的量(板书:两种相关联的"量)、
时间和路程是两种相关联的量,路程是怎样随着时间变化而变化的呢?
让每一小组(8个小组)的同学选一组相对应的数据,计算出它们的比值、教师板书出来:=90,=90,=90,=90,
让学生观察这些比和它们的比值,看有什么规律、教师板书:相对应的两个数的比值(也就是商)一定、
比值90,实际上是火车的什么?你能将这些式子所表示的意义写成一个关系式吗?板书:=速度(一定)
教师小结:通过刚才的观察和分析,我们知道路程和时间是两种什么样的量?(两种相关联的量、)路程和时间这两种量的变化规律是什么呢?〔路程和时间的比的比值(速度)总是一定的、〕
2、教学例2、
出示例2:在布店的柜台上,有像下面一张写着某种花布的米数和总价的表、
数量(米) 1 2 3 4 5 6 7
总价(元) 8。2 16。4 24。6 32。8 41。0 49。2 57。4
让学生观察上表,并回答下面的问题:
(1)表中有哪两种量?
(2)米数扩大,总价怎样?米数缩小,总价怎样?
(3)相对应的总价和米数的比各是多少?比值是多少?
然后进一步问:
这个比值实际上是什么?你能用一个关系式表示它们的关系吗?板书:=单价(一定)
教师小结:通过刚才的思考和分析,我们知道总价和米数也是两种相关联的量,总价是随着米数的变化而变化的,米数扩大,总价随着扩大;米数缩小,总价也随着缩小、它们扩大、缩小的规律是:总价和米数的比的比值总是一定的、
3、抽象概括正比例的意义、
教师:请同学们比较一下刚才这两个例题,回答下面的问题:
(1)都有几种量?
(2)这两种量有没有关系?
(3)这两种量的比值都是怎样的?
教师小结:通过比较,我们看出上面两个例题,有一些共同特点:都有两种相关联的量,一种量变化,另一种量也随着变化,并且这两种量中相对应的两个数的比值(也就是商)一定、像这样的两种量我们就把它们叫做成正比例的量,它们的关系叫做正比例关系、
最后教师提出:如果我们用字母x,y表示两种相关联的量,用字母k表示它们的比值,你能将正比例关系用字母表示出来吗?教师板书
4、教学例3、
出示例3:每袋面粉的重量一定,面粉的总重量和袋数是不是成正比例?
教师引导:
面粉的总重量和袋数是不是相关联的量?
面粉的总重量和袋数有什么关系?它们的比的比值是什么?这个比值是否一定?板书:=每袋面粉的重量(一定)
已知每袋面粉的重量一定,就是面粉的总重量和袋数的比的比值是一定的,所以面粉的总重量和袋数成正比例、
5、巩固练习、
让学生试做第13页做一做中的题目、其中(3)要求学生说明这个比值所表示的意义,学生说成是生产效率和每天生产的吨数都可以
四、课堂练习
正比例这节课是在正比例与反比例这一单元的第二课时,在学生体会了生活中存在大量的相互依存的变量的基础下学习的一课。为了让孩子们更好地理解本节课的内容,我采用教材提供的两个问题情境:首先是正方形的周长和边长、面积和边长变化关系的情境,采用表格的形式让孩子们观察数据的变化情况,从而初步感知“变化过程中,正方形的周长与边长的比值是一定的”,为接下来学习正比例奠定基础。
本节课开始,我采用回忆导入新课,通过复习让学生更加深刻地理解和感受两种相关联的量之间的变化规律和为探究新的知识做好铺垫。
紧接着我采用书中41面给出的2个表格,让同学们通过观察、思考、交流、讨论等过程,让孩子们总结发言概括。最后引导学生质疑在第一个问题中,正方形的周长和边长、面积与边长成正比例吗?通过具体情境让给孩子们更加深刻地理解正比例的含义,并且掌握判断两个量是否能够组成正比例的方法。
课本41页下方给出了一个描述性的定义:像这样,路程和时间两个量,时间变化,所行驶的路程也随着变化,而且路程和时间的比值(也就是速度)一定,我们就说路程和时间成正比例。在教学这一部分时,由于书中的概念比较长,我没有让孩子们将书中长段文字转化为两点:
1、两个相关联的量;
2、比值不变。
处理这一部分的时候我没有给孩子们足够的时间去自己发现总结,而是我自己边讲解边总结了两点,并直接告诉了孩子们后期判断两个量是否能组成正比例要紧扣两点进行阐述。
这一部分其实可以让孩子们自己概括总结这段话,并从中提炼出精华,多好的一个锻炼机会,我没有抓住。后期我会多锻炼孩子们的总结概括能力,不能做一个急教师,要对孩子们的思考和总结有所期待。细细想一想我自身的原因很大,我要慢慢培养自己做一个快乐的“懒教师”,后期要怎么“偷懒”还需要我在平时的课堂上多下点功夫,勤思考,多动脑。本周三要上反比例这节课,期待在这节课中孩子们的表现。
在备课环节,本节课我参考了教师用书以及洋葱数学微课视频,然后将本节课的重点以及难点确定为:理解正比例的意义,应用正比例的意义确定两个量能否构成正比例关系。
亮点:由于本节课的资料对学生来说比较抽象,我将本节课分为两个课时讲解,在第一课时,利用形象的洋葱数学小视频让学生理解正比例的意义。
在理解正比例意义时,我采用的是将难点分散的方法。首先是从生活情境出发,让学生理解何为两个相关联的量,再根据两个量的比值必须,就能够确定这两种量是成正比例的量,它们的关系叫做正比例关系。这个概念十分抽象,学生理解起来比较困难。在此过程中,教学不足的地方是:学生未反复重复相关联的量的定义以及成正比例的量的定义以及什么样的关系叫做正比例关系,导致学生在做题的时候,填空题涉及到填两个量是正比例关系的题目,学生不明白怎样填。
理解概念之后,开始对概念进行深度剖析,加深对概念的理解,尤其是熟练掌握确定两个相关联的量是否成正比例的方法。在这个过程中,给学生举;了两个生活中有关正比例的例子,由于课堂时间有限,在第一节课中,举的例子较少,学生对于如何确定正比例并不是很熟练,基于此原因,又花了一节课的时间,来给学生举了更多的例子,让学生熟练掌握确定两个相关联的量是否是正比例关系的方法。并让学生观看了洋葱数学视频,加深印象。在学生熟练掌握了正比例关系的确定方法后,反比例的讲解和确定两个量是否成反比例就容易的多了。
遗憾:本节课并没有让学生理解正比例关系的图像。
改善:采用例题讲解的方法来让学生理解正比例关系的图像。
以上就是小编为大家带来的5篇《数学教案:正比例的意义》,希望可以启发您的一些写作思路,更多实用的范文样本、模板格式尽在小编。
扩展阅读文章
推荐阅读文章
77范文网 https://www.hanjia777.com
Copyright © 2015-2024 . 77范文网 版权所有
Powered by 77范文网 © All Rights Reserved. 备案号:粤ICP备15071480号-27