人物传记作家也多对他们的人生经历极为感兴趣,出了很多关于他们的传记[1-3]。另外这些近代物理学家们很多本身也颇博学多才,具有良好的文学才能和修养,因此很多人他们自己也出自传。这些传记和自传都能给《近代物理》课堂上的科学史教学提供丰富的素材和参考。相对论和量子力学的理论和公式虽然比较高深难懂,但是它们解释的现象由于跟人们的日常经验相悖,所以还是会引起人们广泛的兴趣。比如时间和空间是不可分的,物体的动量和时间不能同时精确测量,光速是宇宙中最快的速度,这些一般人凭经验的确很难理解。进而人们也会对提出和发现这些理论的科学家们(如爱因斯坦)感兴趣。图1为作者按照时间顺序出场依次在课堂上介绍的量子力学史上各个重要的历史人物。这些科学人物大多数彼此交往比较密切,在学术上好像切磋和影响,进而也加速了思想火花的碰撞和创新性理论的诞生。
在课堂上讲述近代物理科学史的过程中,还可以帮助同学们了解在学术研究过程中需要注意的问题。比如搞科研不能囿于自己的私密空间,而要鼓励多做学术交流。学术交流的好处是:(1)可以了解最新的研究动态;象在近代物理史上著名的哥本哈根学派就是个很好的例子。1921年,在著名量子物理学家波尔的倡议下,成立了哥本哈根大学理论物理学研究所,由此形成哥本哈根学派。其中波恩、海森堡、泡利以及狄拉克等都是这个学派的主要成员。由于哥本哈根学派提供了很好的学术交流环境和学术氛围,在这个学派里鼓励发表不同的观点,不迷信权威,所以涌现出了很多重要的量子力学成果。(2)可以发现自己的不足;比如爱因斯坦于1919年在刚开始推导广义相对论的时候,在公式里人为增加了一个常数项,从而得出他起先所认为的静态宇宙模型。不过1922年亚历山大·弗里德曼摒弃了这个常数项,从而得出相应的宇宙膨胀理论。比利时牧师勒梅特应用这些解构造了宇宙大爆炸的最早模型,模型预言宇宙是从一个高温致密的状态演化而来。到1929年,哈勃等人又用实际的观测证明我们的宇宙的确处于膨胀状态。通过学术交流,爱因斯坦终于接受了宇宙膨胀理论,并承认添加宇宙常数项是他一生中犯下的最大错误。(3)可以激发自己的灵感;比如波尔在1911年从丹麦哥本哈根大学获得博士学位后去英国学习,先在剑桥汤姆逊主持的卡文迪许实验室工作,几个月后又去曼彻斯特在卢瑟福的手下搞科研,这使得他对汤姆逊关于原子的西瓜模型和卢瑟福的核式原子模型了如指掌,同时他又很熟悉普朗克和爱因斯坦的量子学说,这些学术交流活动激发了他的灵感,使得他最终于1913年初创造性地把普朗克的量子说和卢瑟福的原子核概念结合起来,提出了自己的波尔原子模型。(4)可以激励自己不断进步和成长。比如薛定谔在1925年受到爱因斯坦关于单原子理想气体的量子理论和德布罗意的物质波的假说的启发,从经典力学和几何光学间的类比提出了对应于波动光学的波动力学方程,从而奠定了波动力学的基础。但是他一开始并不清楚他自己建立的波动方程中的波具体代表什么物理概念。起初他试图把波函数解释为三维空间中的振动,把振幅解释为电荷密度,把粒子解释为波包,但他无法解决“波包扩散”的问题。最终经过他与波恩的多次学术交流,他逐渐认识到波函数其实是代表粒子在某时某个位置出现的几率,是一种几率波。
二、近代物理知识简介
近代物理的知识主要分为两大类:相对论和量子力学。相对论分为狭义相对论和广义相对论,内容包括伽利略坐标系、迈克尔逊-莫雷实验、洛伦兹变换、闵可夫斯基空间、质能关系式和相对论能量-动量关系式等。量子力学知识包括黑体辐射、光电效应、波尔原子模型、康普顿效应、德布罗意波、戴维逊和革末实验证实了电子的波动性、不确定性原理和薛定谔方程等。这些近代物理理论的公式通常比较复杂,需要用到高等数学的知识,比如薛定谔方程是一个偏微分方程,狄拉克方程里包含矩阵。因而对于近代物理公式的求解就变得十分困难,也不太直观。图2罗列了按时间顺序出现的课堂上需要讲授的量子力学公式。
黑体辐射公式描述的是频谱(单色能密度)u(v,T)和温度以及频率的关系式。光电效应是指每种金属存在截止频率。当照射在金属上的频率小于截止频率时,不管光强多大,照射时间多长,也不会有光电子产生。而当照射在金属上的频率大于截止频率时,不管光强多小,也会产生光电子,且响应时间小于1纳秒。光电子具有各种初速度,其最大初动能与光辐射频率成线性关系,而与光辐射强度无关。当频率在截止频率之上时,单位时间内发射出来的电子数目即光电流强度与光辐射强度成正比。在光电效应理论中,光的能量和光的频率成正比,光的动量和光的波长成反比。
波尔的原子模型给出了电子在分立轨道上的能量公式。能量和电荷的四次方成正比,跟定态的平方成反比。电子在定态具有分立的能量,在定态运动时不辐射电磁能量;但电子可以从一个定态能级跃迁到另一个能量低的定态能级,相应于两个能级差的能量将作为光子被释放出来。德布罗意公式则是给出了物体的能量和动量与其说对应的物质波的波长和频率之间的关系。动量和波长成反比,而能量和频率成正比。薛定谔方程精确地给出了物质波函数的表现形式。微观粒子的量子态可用波函数表示。当波函数确定,粒子的任何一个力学量及它们的各种可能的测量值的几率就完全确定。波函数跟粒子的质量和势能相关。波函数的自变量中包含空间坐标和时间坐标。由于薛定谔方程中出现虚数i,所以波函数原则上应是复数。它同时满足能量守恒,是线性的、单值解的。它给出的自由粒子解与简单的德布罗意波相一致,满足因果律。相对于薛定谔方程之于非相对论量子力学,狄拉克方程[4]是相对论量子力学的一项描述自旋-1/2粒子的波函数方程,不带矛盾地同时遵守了狭义相对论与量子力学两者的原理,实则为薛定谔方程的洛伦兹协变式。这个方程预言了反粒子的存在。
三、近代物理科学史和近代物理知识的结合讲解
近代物理课如果只是讲解近代物理知识,往往显得枯燥无味,难以理解。其实任何科学知识都不是凭空产生的,往往经历了好几代人的不懈努力,最终从量变到质变,导致相对论或量子力学的建立。薛定谔方程也不是一蹴而就,而是经过很多科学家几十年的努力。如果一开始就讲解薛定谔方程,同学们通常很难理解。而如果采用循序渐进的方法并结合科学史来讲,抽丝剥茧,逐渐揭开真理的面纱,那么同学们不光饶有兴趣,而且更容易理解。图3列出了结合科学史和科学人物的近代物理讲解流程。在讲解科学史的过程中,重点讲解科学人物和他们的研究方法,以及这些近代物理公式是怎么一步步得来的。通过近代物理知识和科学史的结合讲解,可以启发同学,让他们了解任何知识都是建立在前人知识和研究的基础上。比如普朗克的黑体辐射公式来自于瑞利-金斯定律和维恩位移定律的启发。瑞利-金斯定律能够解释低频率下的结果,却无法解释高频率下的测量结果。而维恩位移定律能够解释高频率下的结果,却无法解释低频率下的测量结果。而普朗克公式是把这两种定律公式进行一下内插。通过这种历史背景的介绍,同学们就对普朗克公式的来龙去脉知道得一清二楚,对此公式也就理解得更深刻。普朗克公式其实一开始是一个不得已而为之的公式,然后普朗克对此公式进行反推,发现只有认为能量是量子化的,才能得出跟实验结果相吻合的普朗克公式。能量是非连续而是分立的,即使这个想法在当时是多么背离人的日常经验和惊世骇俗,由于它是唯一的解释,普朗克也就不得不接受了这个能量量子化思想。
而能量量子化这个理论不管在当时看上去多么荒谬,还是有人慧眼识珠的。5年之后的1905年,爱因斯坦凭着他对物理学的敏锐欣然接受了能量量子化这个观点,并在此基础上解释了光电效应。近代物理的科学史是一环扣一环,十分引人入胜。在课堂上授课时通过人物->公式->人物…->公式的顺序把所有近代物理的公式合理地衔接起来,自成一个整体,同学们学习起来就会思路清晰,公式也会记得牢,进而对公式能活学活用。普朗克和爱因斯坦彼此惺惺相惜,而普朗克也是少数很快发现爱因斯坦狭义相对论重要性的人之一。在爱因斯坦发表光电效应的8年之后,波尔也接受了能量量子化这个观点,并进而创新性地提出了三个假设:(1)定态假设,即电子只能在一系列分立的轨道上绕核运动,这些轨道对应确定能量值的稳定态,电子在这些状态(轨道)上不辐射电磁波;(2)跃迁假设,即原子在不同定态之间跃迁,以电磁辐射形式吸收或发射能量;(3)角动量量子化假设,即电子轨道角动量是分立的,首尾位相相同的环波才能稳定存在。波尔根据这三种假设成功推导出了氢原子的光谱公式,和实验结果完全吻合。
接下来就轮到德布罗意登场。在波尔提出原子模型的10年之后,1923年德布罗意创新性地在他的博士论文里提出了波粒二象性的观点。以前的量子论观点都是围绕光和能量,没有触及实际的物质或粒子。而德布罗意破天荒地提出任何物体都具有波粒二象性,既包括光,也包括电子、原子甚至人体等所有宇宙中的物体。德布罗意当时的博士生导师朗之万不认可这个观点,但是他比较有责任心,没有直接否决掉德布罗意的博士论文,而是把论文寄给爱因斯坦定夺。而爱因斯坦对物理的理解十分透彻,他马上承认了德布罗意的博士论文的正确性,并且将论文送去柏林科学院,使此理论在物理学界广为传播。1924年,德布罗意又提出可以用晶体作光栅观察电子束的衍射来验证他的波粒二象性理论,因为电子的波长和晶格间距处于同一个数量级。很快就有人响应了德布罗意的实验设想,1927年,克林顿·戴维森和雷斯特·革末用电子轰击镍晶体,果然发现电子的衍射图谱,和布拉格定律预测的一模一样,这证实了德布罗意的波粒二象性理论正确无误。既然电子是一个波,那就应该有个波动方程。所以德布罗意的理论极大地启发了海森堡和薛定谔,导致这两位科学家同时在1925年分别发表了薛定谔方程和矩阵力学,两者可以得到同样的结果。薛定谔随后证明,两者在数学上是等效的。薛定谔方程使用微分方程的形式,比矩阵力学容易理解,所以近代物理的授课一般只讲薛定谔方程。薛定谔提出了薛定谔方程之后,又有个新问题,就是此方程不符合相对论协变性原理,即物理规律的形式在任何的惯性参考系中应该是相同的。所以需要有另外一个量子力学方程来满足相对论。这个任务最终是3年之后(即1928年)由狄拉克来完成的。至此,在讲述有趣的近代物理科学史的同时同学们也掌握了丰富的近代物理知识。
总而言之,在近代物理的教学过程中结合近代物理科学史进行授课,提高了同学们对于近代物理知识的理解和兴趣,避免了填鸭式的教育,让同学们在掌握知识的同时更了解了科学家们科学的研究方法,“授之以渔不如授之以鱼”。该教改收到了十分良好的效果。
参考文献:
[1]格雷克.牛顿传[M].北京:高等教育出版社,2004.
[2]艾萨克森.爱因斯坦传[M].长沙:湖南科技出版社,2012.
[3]约翰.格里宾.量子.猫与罗曼史:薛定谔传[M].上海科技教育出版社,2013.
[4]狄拉克.量子力学原理[M].北京:科学出版社,2008.
扩展阅读文章
推荐阅读文章
77范文网 https://www.hanjia777.com
Copyright © 2015-2024 . 77范文网 版权所有
Powered by 77范文网 © All Rights Reserved. 备案号:粤ICP备15071480号-27