改变观念改进作风树立形象,深入基层为群众办实事解难题。下面是课件网小编为您推荐高一数学必修1教案设计:《函数模型及其应用》。
【内容解析】
函数模型本身就来源于现实,并用于解决实际问题,所以本节内容是通过对展现的实例进行分析与探究使得学生能有更多的机会从实际问题中发现或建立数学模型,并能体会数学在实际问题中的应用价值,同时本课题是学生在初中学习了函数的图象和性质的基础上刚上高中进行的一节探究式课堂教学。在一个具体问题的解决过程中,学生可以从理解知识升华到熟练应用知识,使他们能辩证地看待知识理解与知识应用间的关系,与所学的函数知识前后紧紧相扣,相辅相成。另一方面,函数模型本身就是与实际问题结合在一起的,空讲理论只能导致学生不能真正理解函数模型的应用和在应用过程中函数模型的建立与解决问题的过程,而从简单、典型、学生熟悉的函数模型中挖掘、提炼出来的思想和方法,更容易被学生接受。同时,应尽量让学生在简单的实例中学习并感受函数模型的选择与建立。因为建立函数模型离不开函数的图象及数据表格,所以会有一定量的原始数据的处理,这可能会用到电脑和计算器以及图形工具,而我们的教学应更加关注的是通过实际问题的分析过程来选择适当的函数模型和函数模型的构建过程。在这个过程中,要使学生着重体会的是模型的建立,同时体会模型建立的可操作性、有效性等特点,学习模型的建立以解决实际问题,培养发展有条理的思维和表达能力,提高逻辑思维能力。
【教学目标】
(1)体现建立函数模型刻画现实问题的基本过程.
(2)了解函数模型的广泛应用
(3)通过学生进行操作和探究提高学生发现问题、分析问题、解决实际问题的能力
(4)提高学生探究学习新知识的兴趣,培养学生,勇于探索的科学态度
【重点】了解并建立函数模型刻画现实问题的基本过程,了解函数模型的广泛应用
【难点】建立函数模型刻画现实问题中数据的处理
【教学目标解析】通过对全班学生中抽样得出的样本进行分析和处理,,使学生认识到本节课的重点是利用函数建模刻画现实问题的基本过程和提高解决实际问题的能力,在引导突出重点的同时能过学生的小组合作探究来突破本节课的难点,这样,在小组合作学习与探究过程中实现教学目标中对知识和能力的要求(目标1,2,3)在如何用函数建模刻画现实问题的基本过程中让学生亲身体验函数应用的广泛性,同时提高学生探究学习新知识的兴趣,培养学生主动参与、自主学习、勇于探索的科学态度,从而实现教学目标中的德育目标(目标4)
【学生学习中预期的问题及解决方案预设】
①描点的规范性;
②实际操作的速度;
③解析式的计算速度;
④计算结束后不进行检验;
针对上述可能出现的问题,我在课前课上处理是,课前给学生准备一些坐标纸来提高描点的规范性,同时让学生使用计算器利用小组讨论来进行多人合作以期提高相应计算速度,在解析式得出后引导学生得出的标准应该是只有一个的较好的,不能有很多的标准,这样以期引导学生想到对结果进行筛选从而引出检验.
【教学用具】
多媒体辅助教学(ppt、计算机)。
【教学过程】
教学前言:
函数模型是应用最广泛的数学模型之一,许多实际问题一旦认定是函数关系,就可以通过研究函数的性质把握问题,使问题得到解决.
【教学过程】
教学前言:
函数模型是应用最广泛的数学模型之一,许多实际问题一旦认定是函数关系,就可以通过研究函数的性质把握问题,使问题得到解决.
教学内容师生活动设计意图
探 究 新 知引入:
教师:大家觉得我胖吗?
学生回答
教师:我们在街上见到一个人总是会判断这个人的胖瘦,我们衡量一个人的胖瘦一般是以自己或是他人为标准的,那么我们还见过一些用来计算人胖瘦的式子,目前全世界都使用体重指数(BMI)来衡量一个人胖或不胖:
体重/身高?(以米为单位) BMI在18.5-22.5时属正常范围,BMI大于22.5 为超重,BMI大于30为肥胖。
教师在黑板上计算一下自己的结果。那既然能用一个式子来计算,说明我们可以把这个问题用数学知识来解决,要得到这个式子之类的标准,我们能用一个人的身高和体重来确定吗?
学生回答
教师:当然是找的人越多越好,那我们在课上先少找几个人来研究一下吧,每个小组选一个同学说一下你的身高和体重吧
学生说,教师把相关数据填在用PPT展示的一张表格上
教师:好,有了这些数据我们就可以来研究了,那接下来我们怎么来处理刚收集到的这些数据呢?
学生回答(预期:画散点图——连线——找函数)
教师:好,大家按小组先画图连线然后讨论一下你们小组认为哪个函数的图像符合
学生活动并回答
教师:好,那大家分一下工,你们几个小组来计算这个函数解析式,那几个小组来计算那个函数解析式……
学生分小组活动……
教师:(把学生算出的式子写在黑板上)大家计算出的解析式为什么会不完全相同呢?
学生回答
教师:我们计算的函数解析式是不是都可以用来刻画这个问题呢?
学生回答
教师:我们要怎么样来检验呢?
学生回答(代入其它的点来验证)
教师:那大家来检验一下哪个模型更符合数据情况
学生分小组进行检验
教师:好了,我们利用刚才收集的数据通过我们的努力得出了一个式子,它也就是符合大家的情况的一个胖瘦的标准,既是我们班的一个标准,能用来衡量其它班的同学吗?那我们来计算一下老师的结果是什么样的.
教师:可见用世界肥胖标准对老师的体重进行的评价和所建立的数学模型计算的结果是基本一致的。由此可见,所建立的模型是大体符合实际情况,看来老师是真得要下定决心减肥了.
教师由生活中常见到的现象引出问题,并引导学生进行思考
学生合作探究、动手实践,借助小组利用数据表格来确定可行的函数模型,并展示自己的结果
教师引导学生对结果进行检验
学生通过计算器与作图,利用小组合作在完成任务的同时形成本节重点并突破难点
通过日常生活的例子引出本节主要内容,来提高学生本节课学习的兴趣,提高小组学习的效率
学生利用小组合作在完成任务的同时形成本节重点的框架:函数刻画实际问题的基本过程.从而实现教学目标1,3,4
课 堂 小 结
教师:我们一起来回忆一下刚才解决问题的过程(引导学生集体回答)
得出:函数建模刻画现实问题的基本过程:(教师用PPT展示)
教师:
①下面大家把自己的数据输入计算一下你的情况是什么样的
②大家在课下可以利用研究性学习的时间,调查一下全年级的同学的身高和体重来研究一下,并进一步体会函数建模来刻画现实问题的基本过程
教师用PPT展示函数建模刻画现实问题的基本过程
教师留下一个扩展性作业,让学生课后完成
学生通过探究从而巩固教学目标1,2,3,4.并形成本节重点.
把问题进行拓展,让学生去亲身体会函数建模刻画现实问题的基本过程,从而巩固了本节教学目标
通过这几天对于评价量规的设计与应用课程的学习以及对《评价量规设计对慕课同伴互评有效性的影响研究》的阅读,我认识了评价量规,也明白了评价量规对教学的重大意义。
评价量规是一个真实性评价工具,它是对学生的作品、成果、成长记录袋或者表现进行评价或者等级评定的一套标准。同时也是一个有效的教学工具,是连接教学与评价之间的一个重要桥梁。
一.评价量规可以促进教师有效教学教师如何检验教学目标的达成,我们很多时候也是通过评价的手段实现的。在课堂教学过程中,教师都是公开教学评价,以示对知识点的强调和对学生的公平重视。教师可以在评价活动中得到很多重要的反贵信息,根据这些反馈信息从而改进教学。我在教学中就借鉴了教材中对学生的评价量表制定了自己的教学评价量表,然后和课堂实践一-对照,查漏补缺,居然还发现了很多课堂上由于各种原因而忽略的知识点和技能及学生的情感态度等方面的问题。
二.评价量规可以促进学生有效互评利用评价量规,学生还可以进行自我评价或同伴评价,监控任务的进展情况,正确地判断自己与他人的作品的质量,引导学生更好地发现并解决任务过程中出现的问题,从而促使学生不断做出改进和调整,以更好地满足预期的目标,提高学生任务完成的质量。同时,自我评价和同伴评价还能增强学生对任务的责任感。
总之,评价量规能够促进学生对任务目标的理解,使学生明白学习过程中需要注意的细节;学生还可以进行自我评价或互相评价,学会分析问题,形成自主学习的习惯;老师能够准确及时地向学生提供反馈信息,有效帮助学生进行自我反思,更好地学习,从而高质量地完成学习任务;评价过程的客观性还有利于作出正确的分析。
正确的道路是这样:吸取你的前辈所做的一切,然后再往前走。下面是课件网小编为您推荐初三数学教案设计:《因式分解的简单应用》。
一、教学目的
(一)、 教学目标
1、 会运用因式分解进行简单的多项式除法。
2、 会运用因式分解解简单的方程。
(二)、 教学重点与难点
教学重点:
因式分解在多项式除法和解方程两方面的应用。 教学难点:应用因式分解解方程涉及较多的推理过程。
二、 教学过程
(一) 引入新课
1、 知识回顾
(1) 因式分解的几种方法:
①提取公因式法: ma+mb=m(a+b)
②应用平方差公式: – = (a+b)(a-b)
③应用完全平方公式:a ±2ab+b =(a±b)
(2) 课前热身:
①分解因式: (x +4) y - 16x y
(二) 师生互动,
讲授新课
1、运用因式分解进行多项式除法
例1 计算:
(1) (2ab -8a b) ÷(4a-b)
(2)(4x -9) ÷(3-2x)
解:(1) (2ab -8a b)÷(4a-b) =-2ab(4a-b) ÷(4a-b) =-2ab (2) (4x -9) ÷(3-2x) =(2x+3)(2x-3) ÷[-(2x-3)] =-(2x+3) =-2x-3 一个小问题 : 这里的x能等于3/2吗 ?为什么? 想一想:那么(4x -9) ÷(3-2x) 呢?
练习:课本P162——课内练习1
2、 合作学习 想一想:如果已知 ( )×( )=0 ,那么这两个括号内应填入怎样的数或代数式子才能够满足条件呢? (让学生自己思考、相互之间讨论!)
事实上,若A×B=0 ,则有下面的结论:
(1)A和B同时都为零,即A=0,且B=0
(2)A和B中有一个为零,即A=0,或B=0 试一试:你能运用上面的结论解方程(2x+1)(3x-2)=0 吗?
3、 运用因式分解解简单的方程
例2 解下列方程:
(1) 2x +x=0 (2) (2x-1) =(x+2)
解:x(x+1)=0 解:(2x-1) -(x+2) =0
则x=0,或2x+1=0 (3x+1)(x-3)=0
∴原方程的根是x1=0,x2= 则3x+1=0,或x-3=0
∴原方程的根是x1= ,x2=3
注:只含有一个未知数的方程的解也叫做根,当方程的根多于一个时,常用带足标的字母表示,比如:x1 ,x2 等
练习:课本P162——课内练习2 做一做!对于方程:x+2=(x+2) ,你是如何解该方程的,方程左右两边能同时除以(x+2)吗?为什么?
教师总结:运用因式分解解方程的基本步骤
(1)如果方程的右边是零,那么把左边分解因式,转化为解若干个一元一次方程;
(2)如果方程的两边都不是零,那么应该先移项,把方程的右边化为零以后再进行解方程;遇到方程两边有公因式,同样需要先进行移项使右边化为零,切忌两边同时除以公因式!
4、知识延伸
解方程:(x +4) -16x =0 解:将原方程左边分解因式,得 (x +4) -(4x) =0 (x +4+4x)(x +4-4x)=0 (x +4x+4)(x -4x+4)=0 (x+2) (x-2) =0 接着继续解方程,
5、 练一练
①已知 a、b、c为三角形的三边,试判断 a -2ab+b -c 大于零?小于零?等于零? 解: a -2ab+b -c =(a-b) -c =(a-b+c)(a-b-c)
∵ a、b、c为三角形的三边 ∴ a+c ﹥b a﹤b+c
∴ a-b+c﹥0 a-b-c ﹤0 即:(a-b+c)(a-b-c) ﹤0 ,因此 a -2ab+b -c 小于零。
6、 挑战极限
①已知:x=2004,求∣4x -4x+3 ∣ -4 ∣ x +2x+2 ∣ +13x+6的值。
解: ∵4x - 4x+3= (4x -4x+1)+2 = (2x-1) +2 >0 x +2x+2 = (x +2x+1)+1 = (x+1) +1>0
∴ ∣4x -4x+3 ∣ -4 ∣ x +2x+2 ∣ +13x+6 = 4x - 4x+3 -4(x +2x+2 ) +13x+6 = 4x - 4x+3 -4x -8x -8+13x+6 = x+1
即:原式= x+1=2004+1=2005
(三)梳理知识,总结收获
1、函数
①一般地,如果在一个变化过程中有两个变量x和y,并且对于变量x的每一个值,变量y都有的值与它对应,那么我们称y是x的函数其中x是自变量
②表示函数的方法一般有:列表法、关系式法和图象法
③对于自变量在可取值范围内的一个确定的值a,函数有确定的对应值,这个对应值称为当自变量等于a的函数值
2、一次函数与正比例函数
若两个变量x,y间的对应关系可以表示成y=kx+b(k、b为常数,k≠0)的形式,则称y是x的一次函数,特别的,当b=0时,称y是x的正比例函数
3、一次函数的图像
①正比例函数y=kx的图像是一条经过原点(0,0)的直线。因此,画正比例函数图像是,只要再确定一点,过这个点与原点画直线就可以了。
②在正比例函数y=kx中,当k>0时,y的值随着x值的增大而减小;当k<0时,y的值随着x的值增大而减小。
③一次函数y=kx+b的图像是一条直线,因此画一次函数图像时,只要确定两个点,再过这两点画直线就可以了。一次函数y=kx+b的图像也称为直线y=kx+b。
④一次函数y=kx+b的图像经过点(0,b)。当k>0时,y的值随着x值的增大而增大;当k<0时,y的值随着x值的增大而减小。
4、一次函数的应用
一般地,当一次函数y=kx+b的函数值为0时,相应的自变量的值就是方程kx+b=0的解,从图像上看,一次函数y=kx+b的图像与x轴交点的横坐标就是方程kx+b=0。
1、认识二元一次方程组
①含有两个未知数,并且所含有未知数的项的次数都是1的方程叫做二元一次方程。
②共含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。
③二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。
2、求解二元一次方程组
①将其中一个方程中的某个未知数用含有另一个未知数的代数式表示出来,并代入另个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程,这种解方程组的方法称为代入消元法,简称代入法。
②通过两式子加减,消去其中一个未知数,这种解二元一次方程组的方法叫做加减消元法,简称加减法。
扩展阅读文章
推荐阅读文章
77范文网 https://www.hanjia777.com
Copyright © 2015-2025 . 77范文网 版权所有
Powered by 77范文网 © All Rights Reserved. 备案号:粤ICP备15071480号-27